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Convergence properties of quadratic spline interpolation of continuous func­
tions that does not necessarily take place at the midpoints of mesh intervals are
investigated. A theorem giving lower bounds on the elements of the inverse of
certain tridiagonal matrices is proved. This result is used to precisely relate the
norm of certain interpolating projections to the points of interpolation and local
mesh ratios. It is shown, for example, that for Lipschitz continuous functions,
any choice of interpolation points, one in each mesh interval, uniformly bounded
away from the mesh points, yields convergence at the best possible rate with no
mesh ratio restriction.

1. INTRODUCTION

The purpose here is to study the convergence properties of quadratic
splines interpolating a given continuous function. Particular attention is paid
to the relation between the choice of interpolation points and the bounded­
ness in qQ, 1] of the resulting projection. Marsden [6] showed that quadratic
spline interpolation at the midpoints of mesh intervals gives rise to projec­
tions that are uniformly bounded in qQ, I]. In [3], Kammerer et al. extended
Marsden's result by proving, among other things, convergence of derivatives
and a local convergence theorem. They also applied their results to the
numerical solution of a two-point boundary value problem. It is natural to
expect that interpolation at points "close" to the midpoints of the mesh
intervals would yield results similar to those just mentioned. One of our
purposes is to make the word "close" as precise as possible. In Section 3 we
obtain sharp bounds on how far away from the midpoints one may inter­
polate and still have uniformly bounded projections. One result, Theorem 3.2,
is valid for all partitions and any choice of interpolation points satisfying a
certain inequality. Another result, Theorem 3.4, relates a local mesh ratio
restriction to the boundedness of projections determined by a single para­
meter A. In Section 4, we show that for the class of Lipschitz continuous
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functions quadratic spline interpolation always converges at the correct rate
as long as the points of interpolation are kept uniformly away from the mesh
points. This is somewhat similar to the easily proved result that continuous
piecewise linear interpolation always converges to a given continuous
function as long as the points of interpolation are kept uniformly away from
the midpoints of the mesh intervals. Since de Boor [I] has investigated
quadratic spline interpolation at the mesh points, this paper may be thought
of as interpolating the results of [3] (or [6]) and [I]. We note that Sharma and
Tzimbalario [9] have also considered extensions of Marsden's results.

The methods used are matrix theoretic. All interpolation problems under
consideration here give rise to nonnegative tridiagonal matrices. Using the
fact that such matrices can be symmetrized [8], we prove bounds for the
elements of the inverse of such a matrix. This result, which is of some interest
in itself, complements a result of Kershaw [4]. Of course it was motivated by
[4]. These results are contained in Section 2.

Finally, we note that it is possible to apply our results, at lest in theory, to
the numerical solution of some operator equations. However, we do not do
this since, by now, such applications are standard (see also the remarks at
the end of the paper).

The notation in this paper is fairly standard and can be found in [3, 10].

2. BOUNDING THE ELEMENTS OF THE INVERSE OF CERTAIN TRIDIAGONAL

MATRICES

If M = (mij) is a tridiagonal N X N matrix, the notation M = (ai bi Ci)
means that mi,i-I = ai , mi.i = bi , mi.i+l = Ci' We leave al and CN unde­
fined. We are interested in estimating the elements of A-I = ((Xij), where
A = (ai I Ci), ai+l Ci > 0, I <; i :;( N - I, and 1ai I + I Ci I :;( I Vi. Kershaw
[4] has obtained upper bounds on the 1 (Xi,j I's which show that for the case
I ai 1+ I Ci I :;( y < I Vi, the (Xi/S decay like r lHI for some °< r < I, r
depending only on y. Using different methods, we shall obtain lower bounds
for the I (Xij I's. We first reduce the problem to the case of A a symmetric
matrix, cf. [8, p. 157].

PROPOSITION 2.1. Let A = (ai I Ci) be an N X N matrix with ai+l Ci > 0,
I ~ i ~ N - I. Then, there is a diagonal matrix D = diag(di , ... , dN ) such
that

Proof Let dl = I, dj = dj-I(cj-I(aj)I/2, 2 :;( j :;( N.
Note that if A-I = ((Xu) and A-I = (au), then (Xu = d;Idiaij .
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We now assume that A = (ri 1 ri+l) and A-I = (aii)' Let ej be the usual
jth coordinate vector in [RN. Thejth column of A-I is the solution of Ax = ej .
Define A = (-ri 1 -ri+l) and note that if Ay = ej then the coordinates of y
are related to those of x by Yj = (-l)j+1 Xj , 1 ~j ~ N. Writing A = 1- B,
we have y = (I - B)-I ej = L::~o Brnej if pCB) < 1, where pCB) is the spectral
radius of B. Since the components of Brnej are all nonnegative, we have that

and

Consequently, since B = (ri 0 ri+I), we have

I Xj I = Yj > 1,

and

i

I Xi I = Yi > IT rk,
k~i+I

j

I Xi I = Yi > IT rk'
k~i+I

if i > j,

if i <j.

LEMMA 2.2. Assume that ri > 0 for all i and that p(I - A) < 1. Then,
with A-I = (aii) we have

n

I aij I> n rk,
k~rn

(2.1)

where m = j + 1 and n = i if i ~ j and m = i + 1, n = j if i < j (with the
convention that ni~i+I rk = 1).

THEOREM 2.3. Let A = (ai 1 Ci) be a tridiagonal N X N matrix with
aiCi-I > 0, 2 :'( i :'( N. Assume that peA - I) < 1. Then, with A-I = (aij) we
have

and

j

IT I ak I < I (Xii I ,
k~i-t-1

i

IT I Ck-I I < I aij I ,
k~i+I

if i <j,

if i > j.

(2.2)

(2.3)

Proof Combine Proposition 2.1 and Lemma 2.2.
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In this section we study the convergence properties of quadratic spline
interpolation of continuous functions. Let L1: 0 = Xo < Xl < ... < XN = 1
be a partition of [0, 1]. For a vector A= (AI"'" AN), 0 < Ai < 1, we consider
the projection P( = peA, L1»: C[O, 1] -+ S(2, L1) = {fE Cl[O, 1]:f is a qua­
dratic polynomial on each [Xi' Xi+!], 0 ~ i ~ N - I}, defined by the condi­
tions peA, L1)f = s if and only if 0 = (s - f)(O) = (s - f)(I) = (s - f)(gi),
1 ~ i ~ N, where gi = AiXi_l + (1 - Ai) Xi' For a ~ I, let,gll" = {L1:
I/a ~ (Xi+! - Xi)/(Xi - Xi-I) ~ a, 1 ~ i ~ N - I}. With hi = Xi - Xi-I'
it is easy to check that peA, L1)f = s if and only if for I ~ i ~ N - 1

aisH + Si + CiSi+1 = di1{hi+l(1 - Ai+!)(l - Air 1!(gi) + hiA;Ai~d(gi+J},
(3.1)

where

di = hi+l(I - Ai+1)(1 + Ai) + hiAi(2 - Ai+1),

ai = \2(1 ~ Ai+l) hi+1(1 - AiF I di1,

and

Since hi+1(I - Ai+1) d;1 < (1 + Ai)-1 and h;Aid;1 < (2 - Ai+l)-t, the right­
hand side of (3.1) can be bounded above by Ilfll", (1 - V)-1 (2A;+1 ­
A~+J-l. Also, if Pf = s, then max",. <;;"'<;;"'. [ s(X)I ~ K(A;){I Si I + I S;-1 I +

t-l ."

I!(g;)I}, where K(A;) is a constant depending only on A; . Therefore, II P II can
be bounded above in terms of the quantities min; Ai , min; {I - Ai}, and
II A-III", , where A is the matrix of(3.1). To bound II A-III", , we use the results
of the previous section.

LEMMA 3.1. For any L1, 0 < ai+1c; < t, I ~ i ~ N - 1.

Proof
1 did;+1

ai+1Ci (1 - Ai+l) hiA;Ai+1(1 - Ai+2) hi+2 •

Now,

since Ai+l > O.

Also,

since Ai +1 < 1.

THEOREM 3.2. Assume that I A; - t I ~ y < t(21 / 2 - 1) Vi. Then, there
is a constant K = K(y) independent ofLI and A, such that II peA, L1)II", ~ K.
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Proof A routine diagonal dominance argument works (cf. [3]).
It can be shown that the above range of .\; is sharp. Let 21 / 2j2 < A< 1 and

let Ai = AVi. In this case

A2h d- l A
2

ai = i+l; = 1 _ A2 + (hdh
i
+

l
)(2A _ A2) .

Let k l > 0 be given. Since A> Ij21/ 2, we may recursively choose {k;}~2 so
that

Let Yl = k l and YHI = Yi + k i for i = 1,2,... , N - 1. Let p(x) = (ljYN) x
and Xi = P(Yi)' Then, for the partition Ll: 0 = Xo < ... < XN = 1, the a/s
of (3.1) are all greater than 1. Therefore, by (2.2) the inverse of the matrix A
of (3.1) is bounded below by N - 1. That is, there is a vector g = (gl '00"
gN-IY with II g 1100 = 1 so that II A-lg 1100 ;? N - 1. We still must show that the
components of such a vector may be taken to be of the form

1<,i<,N-1,

where each IIi I <, K, for some constant K independent of N. Consider the
matrix B = (bi;) defined by bi ; = hi+ljd; , bi,Hl = hijdi , bi} = 0 otherwise.
We may assume that hi/hi+l <, i for all i. It suffices to show that II B-1 1100 <, K
for some K independent of N. Now, B is strictly diagonally dominant so
II B-1 1100 <, (mini {bii - bi.i+l})-l <, (mini {thi+ld;I})-1 <, 2 + 2A - 3A2• In
the case that Ai = 21 / 2/2 for all i, the above argument can be modified to
produce a/s satisfying gi > 1 - E for any E > O. In particular, one chooses
{ki} so that ki+l > E-1ki(2(2)l/2 - 1).

THEOREM 3.3. For every positive integer N and every AE (21/2j2, 1), there
is a partition Ll: 0 = X o < ... < X N = 1 and a constant K = K(A) depending
only 00 A such that II peA, Ll)lloo ;? K(A) N, where A= (AI '00" AN)' Ai = ).,for
all i.

Proof The computations above show that we may find a functionfsuch
that IIflloo <,2 + 2A - 3A2 and II P(A, Ll)flloo ;? N - 1.

There are several ways in which the above results may be extended. By
restricting the class of partitions under consideration to PJJu for some fixed
a ;? 1, one may hope to show that there is a constant C(a) so that if I Ai - t I
<, y < C(a) for all i, then II peA, Ll}lloo <, K(y, a} for some constant K(y, a)
independent of Ll and A. This is the case, at least for Aof the form (.\, A,oo., A).
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THEOREM 3.4. Let a? 1 be given. Let 2a - (1 + a + 2(2)1/2 < A
(2a + 1) < 1 + (1 + a + 2(2)1/2. Then, there exists a constant K(a, A) so
that Jor any Ll E &a , [I peA, Ll)llco :::;; K(a, A), where A= (A, ... , A). Furthermore,
these bounds on Aare best possible.

Proof In (3.1) let hi+1 = fLhi , then ai < 1 if and only if 1(2fL + 1) A-I I
< (1 + fL + 2fL2)1/2. Similarly, Ci < 1 if and only if 1(2 + fL) A- 2 I <
(p.2 + fL + 2)1/2. The condition Ll E f!lJa means that a-I:::;; fL :::;; a. One can
check that the above inequalities hold for all fL in this range if and only if A
satisfies the hypotheses of this theorem. Also, if, for example, hi+1 = a-1bi

for all i and A(2a + 1) < 2a - (1 + a + 2(2)1/2, then Ci > 1 for all i.
Therefore, the norm of matrix of (3.1) is bounded below by N - 1. An
argument similar to that preceding Theorem 3.3 shows that II peA, Ll)llco ? CN
where C depends only on Aand a. Q.E.D.

Another way of extending the results of this section is to restrict attention
to narrower classes of functions then C[O, 1] and to try to prove convergence
results for arbitrary partitions. This is the topic of the next section.

4. ApPROXIMATION' OF SMOOTH FUNCTION'S

The modulus of continuity of a functionJE C[O, 1] is defined to be w(/, 0)
= sup {! f(x) - f(Y)1 : 1x - Y I :::;; o}. We say JE Lip", if there is a constant
M > °so that w(/, 0) :::;; Mo'" V0 > 0. Let A= (AI, ... , AN) and let peA, Ll) be
as in the previous section. If PJ = s, then on [Xi-I, x;], s has the form

sex) = ihi\si - Si-1)(X - t;)2 + (AiSi-1 + (1 - Ai) s;}(x - gi) + f(t;),
(4.1)

where s; = s'(x;) and t; = A;X;_l + (1 - A;) x;. The constraint s(x;+) =

s(x;-) yields the equations for 1 :::;; i :::;; N - 1

where 0:, = Alh;(hi + hi+1)-1, f3i = (1 - Ai+1)2 hi+1(hi + hi+1)-l and Yi =
(hi + h;+1)-l {(1 - Ai) Aihi + (1 - Ai+1) Ai+1hi+1}'

Now, s~ = 2(1 - A12)-1 h11{f(gl) - f(O)} - (1 + A1)-1 (1 - AI) s~ and s~

= 2(2 - AN)-l {A"N1h"N1[f(1) - f(tN)] - iANS~_l}' Therefore, for i = 1, N - ]
(4.2) becomes

(2(1 + A1)-1 A10:1 + f31 + Yl) s~ + f31S~

= 2(h1 + h2)-1 {f(g2) - f(gl) - A12(1 - A1)-2 [f(gl) - rO)]},
(4.3)
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= 2(hN+ hN_1)-1 {f(~N) - f(~N-l)

- AN
1(2 - ANr1 (1 - AN)2 [f(1) - f(~N)]}.

It is easily checked that the system (4.2)-(4.3) is strictly diagonally dominant
and that the strength of the diagonal dominance depends only on the quantity
mini P'i' 1 - Ai}.

Assume now thatfE Lipl' Then, the right side of (4.2)-(4.3) is bounded by
a constant K depending only on Al and AN . The strict diagonal dominance of
the system yields that

max I s; I ~ M max {Yi1
}.

I i
(4.4)

sup II s' lleo = max I s; I ~ 2M m~x {[Ai(1 - AiW1
}. (4.5)

O~x~l I •

Note that the above bound is independent of LJ. Now, let x E [Xi-I, Xi], then
J sex) - f(x) I ~ I sex) - s(~i)1 + If(~i) - j(x)I ~ K I x - ~i I maxi {[Ai
(1 - Ai)]-l}.

We have proven:

THEOREM 4.1. Let f E Lipl' Assume there is an IE > 0 so that IE ~ Ai ~
1 - IE for all Ai' Then, there is a constant K depending only on IE and the
Lipschitz constant offso that

II peA, LJ)f -'- flleo ~ K.d.

The above result shows that by assuming a little smoothness on the part of
the functions we interpolate we may significantly improve the results of the
previous section, in particular, Theorem 3.2. This phenomenon is not rare in
spline theory; for example, cubic spline interpolation at the partition points
with appropriate end conditions might not converge for a given continuous
function; however, it does converge, and at the right rate, for all W2

2 func­
tions, cf. [5, 7].

Now, letfE Lip", for some 0 < ex < 1 and let x E [Xi-I, Xi]' Then

If(x) - s(x)I ~ I f(x) - f(~i)l + I S(~i) - s(x)I

~ Khi'" + Is; Ilpi(x)l + [s;-lll qi(X)I , (4.6)
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where Pi and qi can be determined from (4.1). We note that Iplx)I <; 2hi and
I qi(X)I <; 2hi for all Xi-l <; x <; Xi . Now,

(4.7)

where «(Xij) is the inverse of (4.2)-(4.3) and the Ij(f)'s are the components of
the right-hand side of (4.2)-(4.3), e.g., I;(f) = 2(hj + hj+l)-l [f(gj+l) ­
f(gj)] for 2 <;j <; N - 2. If we assume that, for some E > 0, E <; Ai <;
1 - E for all i and that Ll E f?JJa for some a ;?o 1, then we can bound (4.6) as
follows

f si I <; K(hi + hi+I)a-1 L I (Xij l(al-a)IHI ,
j

(4.8)

where K depends on E and f but not on Ll. Since the strength of the diagonal
dominance of (4.2)-(4.3) does not depend on Ll, there are K> °and °<
r < 1 depending only on E such that I (Xij I <; Kr IHI . Therefore, if aa-l < r,
the right-hand side of (4.8) becomes a geometric series and yields the bound

I f(x) - s(x)1 <; Kht, Xi-l <; X <; Xi , (4.9)

where K depends onf, E, and a but not on Ll. We summarize this in

THEOREM 4.3. Let f E Lipa . Assume there is an E > °so that E <; Ai <;
1 - E for all i. There is a constant ao = ao(E, (X) > 1 such that if Ll E f?JJa for
some a < a o , then there is a K = K(f, a, E) such that for Xi-l <; X ~ Xi

I pCA, Ll)f(x) - f(x) I ~ Khi
a

•

This result may be viewed as an attempt to fill the gap between Theorems
3.2 and 4.1.

Remarks. 1. If the interpolationparameters Ai are all equal to 0, it may
not be the case that peA, Ll) f -->- f even for f E C2[0, 1]. A thorough analysis
of this case can be found in [I].

2. All of the convergence results presented here are "local" in the sense of
[3, p. 247]. This can be seen from the exponential decay that characterizes
the elements of the matrices arising in interpolation. It is also a direct con­
sequence of [2].

3. The results of this paper are no guarantee that "haphazard" inter­
polation by quadratic splines will actually produce good results numerically.
While it is true that in every convergence proof presented the condition
number, II A 1100 II A-I 1100 , of the matrix to be inverted was independent of the
size of the matrix, it is also true that this condition number may be very large
to begin with.
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